[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
MSc Program in Data Science and Machine/Statistical Learning - Spring 2025 Lecture Series
- To: "News University of Crete" <press@xxxxxxxxxxxx>
- Subject: MSc Program in Data Science and Machine/Statistical Learning - Spring 2025 Lecture Series
- From: "News University of Crete" <press@xxxxxxxxxxxx>
- Date: Wed, 5 Mar 2025 15:55:15 +0200
- Authentication-results: mail.extra.fks.uoc.gr (amavisd-new); dkim=pass	header.i=@admin.uoc.gr
- Authentication-results: mail.extra.fks.uoc.gr (amavisd-new); dkim=pass	header.i=@admin.uoc.gr
- Authentication-results: mx01.uoc.gr; dmarc=pass (p=none dis=none) header.from=admin.uoc.gr
- Authentication-results: mx01.uoc.gr; spf=pass smtp.mailfrom=uoc.gr
- Authentication-results: mx01.uoc.gr;	dkim=pass (2048-bit key) header.d=admin.uoc.gr header.i=@admin.uoc.gr header.b="dXsxy9zJ";	dkim=pass (2048-bit key) header.d=admin.uoc.gr header.i=@admin.uoc.gr header.b="RH9tH2j2"
- Authentication-results: hermes03;	dkim=pass (2048-bit key; unprotected) header.d=admin.uoc.gr header.i=@admin.uoc.gr header.b="RH9tH2j2";	dkim-atps=neutral
- Authentication-results: mx02.uoc.gr; dmarc=pass (p=none dis=none) header.from=admin.uoc.gr
- Authentication-results: mx02.uoc.gr; spf=pass smtp.mailfrom=admin.uoc.gr
- Authentication-results: mx02.uoc.gr;	dkim=pass (2048-bit key, unprotected) header.d=admin.uoc.gr header.i=@admin.uoc.gr header.a=rsa-sha256 header.s=201911 header.b=RH9tH2j2
- Delivered-to: notify@xxxxxxxxxx
- Dkim-filter: OpenDKIM Filter v2.11.0 mx01.uoc.gr 4Z7DbL4SGLz4wyyr
- Dkim-filter: OpenDKIM Filter v2.11.0 mx02.uoc.gr 4Z7DZs3X2GzBbLw
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=admin.uoc.gr;	s=201911; t=1741182942;	bh=4ecM/6t4zAN6H0xCboSQWv0JYyz4HIWPMBhZnMl9Fko=;	h=From:To:References:In-Reply-To:Subject:Date;	b=dXsxy9zJH+zZTwZO0GgdNlHl8/TwuvPdYEMHvkdRYsGtZRZj4swTSrO6W+YDHsDeY	 61QyJvYRnWMVpLgeV87E9OmOepE1wf9NZzt7xhB4yXiVMvJ+r5b4ZZKp0B3Zpx5L8H	 vzEPPQThPPRbeo5spJuQPjlgXoCA9A+zjCqO3idlcdXyk0npYsadn0F4cJnKvlPKK8	 W7f9lLsLP/vcapLrKtW57JUZ2axZr47H0i/FodS/btbt5Mc24dC4nQLOsvN/P7o8dc	 0pi3SxDjwpStjRRapc30hXq6tgkMgXa5ZKJ5Wh8Qpp7DVHNHTfDFmDHbDFR6UOR4kA	 c7qxwHk+67fYg==
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=admin.uoc.gr;	s=201911; t=1741182917;	bh=4ecM/6t4zAN6H0xCboSQWv0JYyz4HIWPMBhZnMl9Fko=;	h=From:To:References:In-Reply-To:Subject:Date;	b=RH9tH2j24tSxBC55H9A1qG0pkgLcneV8p+BEZFcwhjlljs+lnXruOWm/j45syByxF	 D2WcIR0onAAiERDKsxhF5sl0vOTncg6zBKGCiDonPg9B82pzFmckXKfZEl9oEDtaRD	 Qro/mTuyVFix5jlES92VeKQR8Tk499Qq+o3r3wsnqdmvm2QGEZ0FCFJyJv2igkKDG0	 E2vVoxr9sUlJftaMVS/auaoC6jXQhfoVwx9j/dZRk0g5JCimlga5A/vgLMp60JPjvh	 3ifbmVwvgJb04z0oEakfMeWfYzRRfiNOQb5ldmKYeiUzAImI5PVOEy9XK1SYoiyl6L	 c3V4mw7gvSK9Q==
- Dmarc-filter: OpenDMARC Filter v1.4.1 mx01.uoc.gr 4Z7DbL4SGLz4wyyr
- Dmarc-filter: OpenDMARC Filter v1.4.2 mx02.uoc.gr 4Z7DZs3X2GzBbLw
- In-reply-to: <8db2ba7f-7a3c-4006-8213-28ab17639ac1@admin.uoc.gr>
- References: <8db2ba7f-7a3c-4006-8213-28ab17639ac1@admin.uoc.gr>
- Thread-index: AQIc/CpYQV+cO3Bw+FeqarByA7OUcLLhs5pA
ΘΕΜΑ: MSc Program in Data Science and Machine/Statistical Learning - Spring 2025 Lecture Series
ΑΠΟΣΤΟΛΕΑΣ: Ειρήνη Βλαχάκη <vlachaki@xxxxxxxxxxxx> 
🎓 MSc Program in Data Science and Machine/Statistical Learning Spring 2025 Lecture Series
📅 Date: Tuesday, March 11, 2025 | ⏰ Time: 11:30 AM
📍 Location: Meeting Room Vassileios Dougalis, STEP C, KEEK Building, FORTH ________________________________________
Guest Lecture
🔹 Speaker: Liam Solus (KTH Royal Institute of Technology)
🔹 Title: Causal Structure Identifiability via Submodel Geometry Abstract When modeling causal systems with directed graphs, methods for recovering the causal graph face a natural issue: Without any additional modeling assumptions, the graph is generally unidentifiable from only observational data.  Consequently, costly experiments are often needed to identify the causal system and build causally-informed predictive models.  However, structural identifiability typically improves when additional constraints are learned, such as model parameter homogeneities or context-specific invariances.  One can then search a space of submodels defined by a choice of these additional constraints, returning more exact estimates of the causal graph without the need for experimental data.  We will exhibit these methods via a pair of causal discovery algorithms in two cases; namely, large-scale categorical data and linear Gaussian models. Both of these model types are commonplace in industry, while also being cases where structural identifiability remains a theoretical challenge.  In juxtaposition to previous results, structural identifiability for these models, as well as computational efficiency, are closely tied to the combinatorial and algebraic geometry of the submodels of interest.
ΛΙΣΤΑ ΚΟΙΝΟΠΟΙΗΣΕΩΝ ΣΤΗ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ.